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Abstract 
They consider a controlled system with distributed and lumped parameters, the perturbed state of which is described 
by linear differential equations in partial and ordinary derivatives. The system consists of one distributed link with 
finite-dimensional links at its both ends (for example, the systems containing electrical circuits, sufficiently long 
elastic shafts, the pipelines in which it is necessary to take into account the distributed nature of the fluid flow, etc.). 
The paper studies the problem of a lumped optimal control development applied to finite-dimensional links and/or to 
the end of a distributed link that ensures the stable system operation. Two tasks are solved to develop such control. 
First, the method of Lyapunov functions is used to determine the set of controls that ensure the asymptotic stability of 
the closed-loop system; then, the Lagrange multiplier method is used on this set to develop an optimal control with 
the smallest value of the norm at each moment of time. At that, the original equations in private higher-order partial 
differential equations are represented as a system of evolutionary equations and first-order partial differential 
equations by introducing additional variables. The constraint equations are the equations without time derivatives. A 
modified method of Lagrange multipliers is used to take such equations into account when calculating the derivative 
of the Lyapunov function in view of the system under consideration. The transition to partial differential equations of 
the first order, together with the development of ordinary differential equations in the standard Cauchy form, allows 
to construct the Lyapunov function as the sum of integral and ordinary quadratic forms constructively using specific 
equations, the sign-definiteness of which is checked by the Sylvester criterion, to ensure the stability of the closed-
loop system and obtain simpler control laws as the linear functions of phase coordinates. In the case of one-
dimensional distributed systems, these controls can be quite simply implemented in the form of lumped boundary 
controls that require measuring the system state only at the boundary points, which is of great practical importance. 
The results obtained in this work significantly expand the possibilities of Lyapunov functions method use when they 
solve applied problems of control synthesis in engineering objects with distributed and lumped parameters. As an 
example, we consider the problem of determining the minimum boost pressure of the fuel tank, which ensures stable 
operation of the heating furnace. 
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Introduction 
The method of Lyapunov functions is widely used to study the stability and solve the problems of control synthesis in 
the systems with distributed parameters. There are fairly complete reviews of the problems in this area [8; 10; 4]. 
Along with theoretical studies by the method of Lyapunov functions, they performed the studies of specific objects 
with distributed parameters, for example, elastic and aeroelastic objects [4; 7; 9; 1; 2;  3], liquid-propellant rocket 
engines [8; 10; 4], and others [8; 4; 5]. In applications, the main difficulty is the development of the corresponding 
Lyapunov functionals, which were usually constructed intuitively during the study of specific objects, proceeding 
from the total energy, first integrals, and other considerations. In the problems of control synthesis within the systems 
with distributed parameters, Lyapunov functions are often constructed in the form of double integral forms. Such 
forms are quite universal, but at present, there are no methods for their sign-definiteness check. This makes it 
challenging to ensure closed system stability. In this regard, when they solve the problems of stability and synthesis 
of controls in the systems with distributed and lumped parameters, it is proposed to transform the initial high-order 
differential equations into a system of first-order equations in time and spatial coordinates and construct the Lyapunov 
functions as the sum of ordinary and single integral forms, whose sign-definiteness can be checked by Sylvester’s 
criterion application. This approach significantly expands the possibilities of Lyapunov functions method use when 
they solve the problems of stability and synthesis of controls in engineering systems with distributed and lumped 
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parameters. 
 
Methods 
The work uses mathematically rigorous and accurate research methods: the methods of higher-order differential 
equation transformation into a system of first-order equations, the method of Lyapunov functions, the process of 
Lagrange multipliers, and matrix theory. 
During the calculation of the Lyapunov function derivative (2.1) by virtue of equations (1.1) - (1.3), to take into 
account the second equations (1.1), (1.3) without time derivatives, an approach is used, which is similar in its 
procedure to the Lagrange multiplier method. 
The stability conditions are written based on well-known classical results from the theory of stability of finite-
dimensional and distributed systems. The Sylvester criterion checks the sign-definiteness of standard and integral 
quadratic forms. 
 
Results and Discussion 
1. Problem statement. Let’s consider a control system with one distributed and other finite-dimensional links, the 
perturbed state of which is described by the following equations: 

 

       

       

0 0

0 0

,

0,

A x B x A x B x
t x x

C x D x C x D x
x x

    

   

  
   

  

 
   

 

 (1.1) 

  0,1 ,x  

    1 2 3 10, 1, ,
dz

F z F t F t Gu
dt

      (1.2) 

  0, ,t I    

Where  ,x t   – n   vector of the phase functions of the distributed link,  ,x t   –   the 

dimensional vector of the phase functions of this link, the time derivatives of which are not included in the system 

(1.1),  z z t  – m   the dimensional vector of the phase functions of the finite-dimensional links,  1 1u u t  

– r   the dimensional control vector applied to the finite-dimensional links,  1 2u L I ,  A x ,  B x , 

 C x ,  D x ,  0A x ,  0B x ,  0C x ,  0D x  – the matrices whose elements are bounded continuous 

functions, 1F , 2F , 3F , G  – the matrices of constants,  2L I  – the space of functions summable with a square 

at t I . 

Let the values of the first 1n n  of the functions i  at 0x   are used as boundary controls, and the following 

boundary conditions are given: 

    0 2 1 20, , 1, ,Г t u Г t Г z    (1.3) 

where 0Г  – 1n n   the matrix with the elements 1ii  , ij   i j , 1Г , 2Г  – the matrices of constants, 

2u  – 1n   dimensional vector of boundary control,  2 2u L I . 

Let’s denote  1 2,
T

u u u  (T  – the transposition symbol). Any control  2u L I  is considered valid. 

From the mathematical point of view, the problem (1.1) - (1.3) is a boundary value problem for partial differential 
equations with complex boundary conditions. The equations (1.1) represent the general form of any linear partial 
differential equation of arbitrary order in the form of the first order partial differential equations [4; 1]. To transform 
higher-order equations to the form (1.1), one should take the lowest derivatives as additional variables and write down 
the original equation and the integrability condition in these variables. 
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The equations (1.3) are simple boundary conditions containing the control 2u . The equation of dynamics (1.2) of 

finite-dimensional links located at both ends of the distributed link contains boundary values  ,x t  and represents 

a complex boundary condition in the form of a differential equation. 
The equations of the type (1.1) - (1.3) describe the systems that have transmission shafts of considerable length, for 
example, between the engine and the working machine (generator, pump, compressor, etc.); the systems containing 
electrical circuits or pipelines (lines), in which it is necessary to take into account the distributed nature of liquid or 
gas flow, etc. 
The following problem is posed. The following is required: 

a) Select the set of   controls  1 2,
T

u u u  inadmissible controls, that ensure the asymptotic stability of 

the system (1.1) - (1.3) with respect to the variables z , 

1

0

T dx    , where   – the measure characterizing 

the disturbed state of the distributed link. 

b) Find the optimal control  1 2,
T

O O Ou u u  by the set of   with the smallest value of the norm square, 

i.e. the measure 
2 2 2

1 2u u u u     at each moment. 

1. Solution of the problem a. Let’s consider the Lyapunov function 

          
1

1 2
0

, , ,T TV V V x t v x x t dx z t Q z t      (2.1) 

where  v x , Q  – symmetric matrices: the elements Q  are constants, and the elements  v x  are continuous 

bounded functions. 
A feature of the system (1.1) - (1.3) is that the second equation (1.1) and the equations (1.3) do not contain time t 
derivatives. This does not allow to calculate the derivative V directly due to the entire system. First, we calculate the 

derivative  dV dt  due to the first equation in (1.1) and the equation (1.2): 

 
1

0

T T
T T TdV

v A B A B v
dt x x x x

    
                  

  

  0 0 0 0
T T T T TvA A v vB B v dx         

 

      1 1 2 3 12 0, 2 1, 2 .T T T T T T Tz QF F Q z t F Q z t F Q z z QGu       

Following the Lagrange multiplier method, we add to this derivative the following expression to take into account the 
second equations (1.1) and (1.3): 

  
1

1 2 0 0
0

T TP P C D C D
x x

                 

  0 0 1 2 0,
T T

T T T T T T T TC D C D P P dx
x x

     
            

 

      1 2 1 2 1 21, 1, 1,T T T T T Tt R z R Г t Г z t Г z Г                

  1 21, 0,T TR t R z      
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where  1 1P P x ,  2 2P P x , while 1R , 2R  are arbitrary matrices: 1P , 2P  – continuous, 1R , 2R  – 

constant. The brackets  1 2
T TP P  ,  1 2

T TP P  ,   1 21, ,T Tt R z R  

 1 21,T TR t R z    play the role of Lagrange multipliers. 

Let us perform integration by parts and require that the matrices v , 1P , 2P , Q , 1R , 2R  satisfy the following 

conditions: 

 1 1 2 2, ,T T T T TvA PC A v C P P D D P     

 2
1 2 2 0 0 2, ,T T T T dP D

vB P D C P P D D P
dx

     (2.2) 

    1
0 1 0 0 2 , 0,1 .T T d vB P D

vB P D C P x
dx


     

        1 1 1 1 11 1 1 1 0,T Tv A P C R Г Г R     (2.3) 

 3 2 1 2 1 0,T TQF R Г Г R    

    2 1

1 1
0.

0 0
P D vB PD    

Then, taking into account the first equation (1.3), we obtain the following: 

    
1

1 2 1 2 2
0

2 0, 0,T T T TdV
N dx z M z z QGu u Q u t Q t

dt
          

  2 32 0, ,Tu Q t  (2.4) 

Where 
 1

0 0 1 0 0 1 ,T T Td vA PC
N vA A v PC C P

dx


       1 1 2 2 2 2 ,T T TM QF F Q R Г Г R     

 
1 1, , ,

T

n n      1,3jQ j   – 1 1n n ,    1 1n n n n   ,  1 1n n n   – the matrices that 

divide the matrix        10 0 0 0v A P C     into blocks as follows: 31

3 2
T

QQ

Q Q

 
 
  

. 

Let us introduce the functional      
1

0

, ,T TW x t w x x t dx z z    , where  w x ,   are symmetric 

matrices;   – constant, and the elements  w x  are continuous bounded functions. 

Within the framework of the method of Lyapunov functions, the solution of the problem a gives the following 

statement 1: any control  1 2,
T

u u u  , ensuring the fulfilment of the inequality 

 ,
dV

W
dt

   (2.5) 

where dV dt  is determined by the expression (2.4), guarantees the asymptotic stability of the solution 

0z     of the system (1.1) – (1.3) by variables z ,  , если интегральная квадратичная форма 1V  

(2.1) if the integral quadratic form (2.1) is continuous and definitely positive in the measure  , the quadratic form 
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2V  (2.1) is definitely positive, and the derivative dV dt  (2.4) is definitely negative in variables z ,   [8; 6]. 

The continuity of the integral form 1V  in measure   directly follows from the boundedness of the matrix elements 

 v x . The remaining conditions of this statement will be satisfied if the matrices Q  and   are definitely positive, 

and  v x  and  w x  are definitely positive at  0,1x , т.е. 

      0, 0; 0, 0, 0,1 .Q v x w x x      (2.6) 

2. Solution of the problem b. Let’s denote the set of controls via 1   satisfying the following equality: 

 dV
W

dt
   (3.1) 

and, therefore, ensuring the asymptotic stability of the solution 0z     by the variables z ,  . 

On the set of 1  let’s find the optimal control  1 2,
T

O O Ou u u , that minimizes the value u  at each moment 

of time t I . 

Let’s compose the functional  TL u u dV dt W   , where   is the Lagrange multiplier. From the 

condition of reaching min L  by u , i.e. from the conditions 0L   и  
2 0L  , we find the optimal control 

 

   

1

1
2 1 3 1

,

0, , 0,

T
O

O

u G Qz

u E Q Q t E Q



   

 

    

 (3.2) 

where E is the identity matrix. Substituting these controls into (2.4) from the equality (3.1), we obtain the following 
equations: 

  0, 0,1 ,N w x    

 0,TM QGG Q     (3.3) 

     1 1
2 3 1 1 1 32 0,TQ Q E Q E Q E Q Q          

which together with (2.2), (2.3) are used to develop the matrices v , Q . The matrices 1P , 2P , 1R , 2R  are also 

determined from the equations (2.2), (2.3). 

The value  , entering into the controls (3.2) and the equations (3.3) must satisfy the condition 0  . If 0  , 

then we obtain    
00u u u

dV dt dV dt   from (2.4) taking into account (3.2), i.e. at 0   the control 

0u  does not help to ensure the asymptotic stability of the solution 0z    . 

Let us show that if 0  , then the control 0u  (3.2) minimizes the value u  on the set of controls that ensure the 

fulfilment of not only the equality (3.1), but also the inequality (2.5). For this control, we represent in the form 

1 1 1Ou u u   , 2 2 2Ou u u   . Substituting them into (2.4) and using (3.2), (3.3), we find that the 

inequality (2.5) is satisfied if 

  1 1 2 2 2 1 22 .T T T
O Ou u u u u Q u       (3.4) 

Now, taking into account the inequalities (3.4) and (3.2), we obtain the following by direct calculation: 

  1 1 2 22T T T
u O O O Ou u u u u u u u u u            

  2 2 2 1 2 0,T Tu u u E Q u         

i.e. indeed, 0u  minimizes the quantity of u  on the set of controls that ensure the inequality (2.5). 
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Thus, the following statement 2 holds: the control  0u  (3.2) is the solution to the problem b if 0   and the 

conditions (2.6) are satisfied. 
3. Example. Let’s consider the system consisting of a heating furnace and a pipeline for fuel supply from the tank 
to the furnace. The pipeline has a considerable length, and it is necessary to take into account the distributed nature of 
the flow parameters. The fuel flow in the pipeline is described by the equations [1]. 

  1 2 2 1, , 0,1 ,b d x
t x t x

      
    

   
 (4.1) 

where 
y

x 


,    
1

,
,

P x t P
x t

P
 




 ,    

2
,

,
g x t g

x t
g

 




 , 

2a g
b

P F






, P F

d
g






,  ,P x t , 

 ,g x t  – the pressure and fuel consumption in the pipeline, y  – the coordinate of the pipeline cross-sections, 

measured from the tank, a  – the speed of sound in the liquid, F ,   – the cross-sectional area and the pipeline 

length, the sign    indicates the values of the quantities in the design operating mode of the system. 

The boundary conditions at 0x   and 1x  : 

    1 2 20, , 1, ,t u t g    (4.2) 

where g  is the fuel consumption in the furnace, 2u  – the relative pressure in the tank created by the pressurization 

system. We will take this pressure for control. 
The change of temperature in the furnace can be described by the equation of the inertial link: 

 1 ,
dz

z k g
dt

    (4.3) 

where 
T T

z
T






 , T  – the furnace temperature,   – the furnace time constant, 1 0k   – the constant gain. 

Introducing the vector  1 2,
T    let’s put down the equations (4.1) – (4.3) in the form of the system (1.1) – 

(1.3), where 1
1

F


  , 1
3

k
F


 , 0 1 2 1Г Г Г   , 

0

a b
A

d





, and the matrices B , 0A , 0B , C , 

D , 0C , 0D , 2F , G  are zero. 

For such a system, let’s consider the problem b, i.e. we find the control 20u  (3.2), that ensures the asymptotic stability 

of the solution 0z    with respect to the variables z ,   with the smallest value of the quantity 
2
2u u  . 

An isochoric process takes place in the heating furnace, in which the furnace pressure is proportional to the 
temperature, i.e. 

  1 21, ,t k z   (4.4) 

where 2 0k   – the constant gain. 

In this example, the matrices 1P  and 2P  are absent. By equations (2.2), (2.3), (3.3) taking into account (4.4) the 

matrices  v x , Q , w ,   are developed with the following elements: 

 

 11
1

2
v

bd


 





,     22 11
b

v v
d

 ,      12
1

1v x
d

  ,     2
11

1

bk
q v

k


 ,     11 1w  ,   
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 22 0w  ,     
2q


 . 

The conditions (2.6) on stability are satisfied. Therefore, the control 20u  (3.2), which in this case will be written in 

the following form: 

 
   20 2 0, ,

2

b
u t

d

 


 


 

Is the solution to the problem b for the system (3.1) - (3.3). 
 
Conclusions 
- Using the method of Lyapunov functions, a set of controls is determined that ensure the asymptotic stability of the 
considered system with distributed and lumped parameters. 
- On this set, using the Lagrange multiplier method, optimal control is developed with the smallest norm value at each 
moment of time. 
- The work has theoretical and practical value. 
- The developed control laws are lumped controls applied to finite-dimensional links and (or) to the boundaries of the 
distributed link and can be implemented quite simply and accurately in practice. 
 
Summary 
When they solve the problems of control synthesis in the systems with distributed and lumped parameters, described 
by linear equations in partial and ordinary derivatives, a new approach is being developed related to the idea of the 
original higher-order equation transformation into a system of first-order equations by time and spatial coordinates. 
The transition to the first-order equations allows to develop the Lyapunov function constructively in the form of a sum 
of integral and ordinary quadratic forms, to obtain simpler control laws as the functions of phase coordinates, and 
ensure the stability of a closed system. The results of the work expand the class of engineering objects for which the 
control synthesis problem can be solved successfully. 
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